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1. INTRODUCTION

The temperature in the capillary and during the interaction of the plasma with the working

fluid is a major unknown parameter required for the detailed modeling and design of

electrothermal chemical (ETC) guns or accelerators. In the present study, we have continued

our use of a bench-top plasma to develop a temperature diagnostic based on atomic

spectroscopy that will be applied to full-scale systems. We have also observed temperature

variations in the flow field that develops as the plasma exits from the plasma capillary orifice.

2. EXPERIMENTAL

The experimental configuration was similar to that previously reported'. A 675-J power

supply with a pulse-forming network for tailoring the current pulse shape transfers energy into

a plasma fixture consisting of a polyethylene capillary, steel holder, and aluminum wire for

initiation of the event. The basic configuration of the capillary and its holder is shown in
Figure 1. For most of the experiments described here, the capillary was a 4.5-mm-dia,

32-mm-long hole bored into a polyethylene rectangular bar 75 mm long and 10 mm square.

The holder is made of two halves of a 75-mm-dia gun-steel cylinder held together by a
high-strength c-clamp. The exit orifice is about 6 mm in diameter. The plasma is started by

vaporizing a 0.11 -mm- (0.004-in) dia aluminum wire. The design as shown is superior for

these studies to that used previously1 in two respects. The first advantage is that optical

access is possible very near the capillary exit. The second improvement, replacing the ten

bolts of the earlier fixture with a c-clamp, allowed for more data to be acquired in reasonable

time. For emission studies, light was gathered with a single 0.2-mm-dia fused silica optical
fiber held in a 1.0-mm-dia stainless steel tube to protect it from the force of the plasma. Light

detection was as before with an Optical Multichannel Analyzer (OMA) (PARC model 1420)
mounted on either 0.25-m and 0.33-m focal length spectrographs, with 1,200 and 2,400

line/mm gratings, respectively. These two combinations allowed either sufficiently broad

spectral coverage to see four strong barium lines or provided higher resolution to see one pair

of the barium transitions in detail to ascertain that they were clean atomic transitions and to

1 Bunte, S. W., and R. A. Beyer. 'Temperature Measurements of ET Plasmas." Proceedings of the 26th JANNAF
Combustion Meeting, CPIA Publication No. 529, vol. III, p. 91, 1989.
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Figure 1. Schematic Drawing of Polyethylene Capillary and Electrodes.

provide information on the emission line width. For all of the observations reported here, the

detector was gated on at varying times during the plasma event. For the absorption studies, a

4-lis duration xenon flash lamp was triggered in synchronization with the OMA detector.

The temperatures reported here are determined from the emission intensities by

calculating for each line the value of {intensity-wavelength/g.A} where g is the degeneracy of

the lower level and A is the Einstein A coefficient of the transition.2 The intensities used are

peak heights. This approach was judged to be more reliable because of noise in the data.

The assumption is implicit that line shapes are constant across the energy range. The

parameter in brackets is proportional to the number density in a state and is here referred to
as the "number density." If one assumes local thermodynamic equilibrium, then the

temperature is determined from the (straight line) slope of a semilogarithmic plot of the

number density vs. the energy of the upper state. For the cases where four transitions are

recorded, a curve fitting program is used to determine this slope. For much of the higher

2 Griem, H. R. Plasma Spectroscopy. New York: McGraw-Hill, p. 270, 1964.

2



resolution data discussed here, the line is determined by two points and the uncertainty is

probably greater but harder to define.

A typical set of curves describing the electrical characteristics of the plasma discharge is

shown in Figure 2. The values measured are the current (kA) and voltage (kV) across the

capillary; the power (kW) and energy (kJ) are calculated from them. Also shown in this figure

is a typical OMA gate pulse (the one shown corresponds to data discussed later in this
report). In this example, the total energy deposited in the discharge is about 285 J, or 42% of

that stored in the power supply. Mass loss by the components was measured for some of the

discharges. One set of carefully measured values with the earlier capillary holder' was

1.6 mg for the polyethylene, 12.0 mg for the stainless steel anode, and 9.8 mg for the graphite
nozzle. It is not known at present how typical these values are or how wide the variation in

them might be. In the new design, the integral nozzle/capillary holder have a total mass too

great to determine the mass loss per shot in our laboratory. The mass loss of the anode

appears to be variable, and may be the source of some of the plasma variations discussed

later.

3. ABSORPTION MEASUREMENTS

Absorption measurements were tried under a variety of conditions in order to avoid the

effects of self-absorption as reported earlier in emission studies, and to make a determination

of the optical density of our plasmas. Uttle was done to make detailed quantitative

temperature measurements with absorption. However, the ratios of the barium lines observed
were similar in absorption and emission. A typical absorption spectrum is shown in the upper

trace of Figure 3. Also shown on this plot is the emission record from a barium cold cathode

lamp for comparison (lower trace). Prominent barium lines are indicated near 4,525, 4,554.

and 4,934 A. As can be seen, the plasma is fairly well behaved and not overly dense for

making measurements.

The difference between absorption and emission was marked for some atoms and

molecular transitions observed. An example is the case of the atomic aluminum transitions
near 3,944 A and 3,962 A. These lines were very weak in emission but had intensity

comparable to the strongest barium lines in absorption. Similarly, for many of the strong

3
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Figure 2. Electrical Characteristics of Typical Event With 4.5-mm Diameter Polyethylene
Capillary.
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Figure 3. Pulsed Absorption in Plasma (Upper Curve) With Strong Barium Peaks Indicated

and Reference Spectrum (Lower Curve) From Cold Cathode Lam[).
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molecular transitions observed, such as those shown in Figure 3, there was not always a

strong correlation between absorption and emission spectra. No attempt was made to identify

the majority of the molecular transitions observed.

An example of an identifiable molecular transition is shown in Figure 4, where an
absorption trace (upper curve) is compared to the well-known C2 Swan band emission from a
methane/nitrous oxide flame (lower curve). The band heads are near 5,165 A and 5,129 A.
Also quite obvious in this figure is the presence of an equally strong absorption band head

near 5,210 A, which was not identified. Molecular transitions identified in other spectra
included several bands of OH near 3,100 A and BaOH near 4,870 A. Other transitions that
might be both expected and easily recognizable, such as those of CH, were not seen. The
temperatures here, although often not as hot as expected at the outset of these
measurements, were still well above typical flame temperatures, making relative band
populations and band shapes appear unfamiliar. Some brief attempts to find a suitable
molecular thermometer among a higher lying system were unsuccessful. These numerous
molecular bands were not anficipated and were a major source of noise in our atomic
spectroscopy studies. Although they were common features of the observed spectra, the
molecular transitions was frequently inconsistent in intensity. At the higher temperatures
discussed later, they were far below the atomic emission intensities. This effect may be due
either to the distribution of intensity over many states or from thermal dissociation of the

molecules.

4. BARIUM EMISSION STUDIES

Once it had been established that the optical density was not a problem in these studies, it
was decided to pursue a systematic set of observations using singly ionized barium (Ba II)
emission as the thermometer. Two important reasons for this choice were that the "line of
sight" characteristic of absorption can possibly be diminished or eliminated in emission

studies, and that fiber optic probes into the flow are more readily devised for emission studies.
The self-absorption that was seen in some of our earlier studies was not a problem under the
conditions applied here. Temperatures were calculated from the spectra using the ratios of
intensities of emission from atomic states separated by about 2.5 eV, as shown in Figure 5.
Under low resolution, four main lines were used-those at 4,525, 4,554, 4,900, and 4,934 A.

5
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Figure 4. Pulsed Absorption in Plasma (Upper Curve) and C, Swan Band Emission From
CH,/NO Flame (Lower Curve).

A typical straight-line fit to the data from an intermediate temperature example is also shown

in Figure 5. The results of the plot shown are 21,000 K, with a standard deviation of about

1,000 K. Statistical uncertainties vary widely from shot to shot, but are typically about 5%.

Total error is more difficult to quantify and is the subject of on-going efforts.

In order to explore the spatial variation of the temperature as the plasma exits the orifice

and expands into the ambient air, the fiber optic probe was moved systematically to a series

of positions at various distances from the orifice. The detector was gated at the same time

(130 pgs after start of current flow) for the entire series, as shown in Figure 2. Thus, if the

events are reproducible, the result is a snapshot of the temperature profile at this time. For

this series, spectra were recorded with the higher resolution spectrograph in an attempt to

correlate spectral line width with temperature as determined from intensity. Thus, the

uncertainties are not well quantified; however, as will be seen, the trend in temperatures is

obvious.

6
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Figure 5. Natural log of Number Density Plotted vs. Upper State Energy and the Linear fit to
the Points for Temperature Determination.

The spectra recorded at distances from 2 to 45 mm are shown in Figure 6. Two obvious

indications of changing plasma conditions are present--the relative peak heights of the barium

lines (4,525 A and 4,554 A) and the half width of the 4,554 A line. The 4,525 A line is

emission from a barium ion (Ba II) state with 5.25 eV of energy; the 4,554 A line is from a

state of the same ion with 2.72 eV of energy. Thus, the relative peak intensities are indicative

of changing relative populations in these states, which we relate to temperature changes, as

previously discussed. Attempts to do a sophisticated curve fit to the emission lines to

determine Lorentzian and Gaussian components and perhaps infer Stark (plasma) vs. Doppler

(thermal) broadening was inconclusive. No attempt has been made to identify or analyze the

other peaks shown in Figure 6. The temperatures calculated from the peak heights are shown

in Figure 7 as a function of distance. The symbols in this figure are not error limits, but were

chosen to suggest approximately the uncertainty in the temperature measurements. The

sharp temperature rise indicated in this figure was reproducible on many days, but it was not

always present. The parameter that is changing has not yet been identified. Possibilities will

be discussed in Section 5.
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5. DISCUSSION

The most prominent feature of the data presented in this report is the obvious, and

probably not surprising, shock wave formation as the plasma exists the capillary. Of particular

note is the high temperatures which approach 50,000 K compared to the 10,000 K

temperatures in the region at the orifice. From gun muzzle flow field experience, the

phenomenolgy of the formation of this shock and corresponding temperature pattern are not

surprising. Without detailed knowledge of the equation of state of these plasmas, a

calculation of the temperatures from a shock formation like this is not possible. This

phenomenon clearly needs to be explored in more detail, since in the ETC gun environment

the plasma is expanding into an even higher pressure region.

Of great concern to the experimentalist is the lack of consistent reproducibility of the shock

behavior. It would be consistently reproducible for several consecutive days and then

disappear for a day or two. Although plasma current and voltage were not monitored

9



precisely, there were no indications of significant changes in the energy deposited into the

capillary under these two greatly differing circumstances (with and without shock wave

formation). In future work, the electrical characteristics will be monitored much more closely.

Other possibilities to be explored include the following. First, the discharge may attach itself

on the front of the steel capillary holder in varying fashions, which would affect the impedance

of the circuit. Second, the interior surface of the capillary may be affected by atmospheric
conditions, such as relative humidity. Third, the wire may vaporize in slightly different fashion

due to length, bending, handling, surface impurities, or the manner of electrical contact.

Fourth, the sound speed of the plasma may be varying significantly because of changed

composition, perhaps from the variation in the amount of heavy atoms deposited into the

plasma from the electrodes.

Aside from the shock variations, the measurements do show consistency and

reproducibility of the temperatures under these conditions.

6. FUTURE STUDIES

The first additional efforts will be directed toward studying the shock behavior more

thoroughly as a function of time and position. Other studies anticipated include adding an exit
nozzle to the polyethylene capillary to change discharge flow rates, measuring the internal

temperature with a fiber optic probe, studying the temperature during plasma interaction with
simple working fluids such as water, and varying capillary geometry and total energy input to

more nearly simulate gun conditions (i.e., to increase plasma current density at least one

order of magnitude).

7. CONCLUSION

Measurements have been made as a function of time and position in a pulsed plasma.

Typical plasma exit temperatures from the polyethylene capillary range from 10,000 K to

15,000 K. The supersonic flow of the plasma from the orifice produces a shock disk which
raises the temperature outside this device to apparent temperatures almost five times as great

as at the capillary exit. Further studies and modeling of this behavior are required to define

the implications, if any, to ETC gun devices.

10
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